Demo Reel
The Global Precipitation Measurement mission (GPM) is a massive, multinational mission utilizing a fleet of spacecraft, sophisticated ground based data processing systems, and years of planning. To capture the essence of this immense undertaking and introduce it to broad audiences, NASA's GPM project office decided to do something out of the box. WATER FALLS is the result. Designed specifically for spherical screens, WATER FALLS abstracts the complex mechanics of the GPM mission, and explores the diversity of phenomena inherent to the water cycle. Presented in sensual, evocative, even surprising ways, WATER FALLS offers vital information about GPM's profound importance to everyone who lives on Earth. WATER FALLS -- A Science On a Sphere Movie
This movie takes us on a space weather journey from the center of the sun to solar eruptions in the sun's atmosphere all the way to the effects of that activity near Earth. The view starts in the core of the sun where atoms fuse together to create light and energy. Next we travel toward the sun's surface, watching loops of magnetic fields rise up to break through the sun's atmosphere, the corona. In the corona is where we witness giant bursts of radiation and energy known as solar flares, as well as gigantic eruptions of solar material called coronal mass ejections or CMEs. The movie follows one of these CME's toward Earth where it impacts and compresses Earth's own protective magnetic bubble, the magnetosphere. As energy and particles from the sun funnel along magnetic field lines near Earth, they ultimately produce aurora at Earth's poles. Space Weather
NASA's Fermi Gamma-ray Space Telescope has detected gamma-rays from a nova for the first time. The finding stunned observers and theorists alike because it overturns a long-standing notion that novae explosions lack the power for such high-energy emissions. In March, Fermi's Large Area Telescope (LAT) detected gamma rays -- the most energetic form of light - from the nova for 15 days. Scientists believe that the emission arose as a million-mile-per-hour shock wave raced from the site of the explosion. A nova is a sudden, short-lived brightening of an otherwise inconspicuous star. The outburst occurs when a white dwarf in a binary system erupts in an enormous thermonuclear explosion. Fermi Sees a Nova
On Friday, 2008 August 01, a total eclipse of the Sun will be visible from within a narrow coridor that traverses half the Earth. This animation shows the Moon passing between the Earth and Sun. Total Solar Eclipse
NASA scientists don't often learn that their spacecraft is at risk of crashing into another satellite. But when Julie McEnery, the project scientist for NASA's Fermi Gamma-ray Space Telescope, checked her email on March 29, 2012, she found herself facing this precise situation. While Fermi is in fine shape today, continuing its mission to map the highest-energy light in the universe, the story of how it sidestepped a potential disaster offers a glimpse at an underappreciated aspect of managing a space mission: orbital traffic control. As McEnery worked through her inbox, an automatically generated report arrived from NASA's Robotic Conjunction Assessment Risk Analysis (CARA) team based at NASA's Goddard Space Flight Center in Greenbelt, Md. On scanning the document, she discovered that Fermi was just one week away from an unusually close encounter with Cosmos 1805, a dead Cold-War era spy satellite. The two objects, speeding around Earth at thousands of miles an hour in nearly perpendicular orbits, were expected to miss each other by a mere 700 feet. Although the forecast indicated a close call, satellite operators have learned the hard way that they can't be too careful. The uncertainties in predicting spacecraft positions a week into the future can be much larger than the distances forecast for their closest approach. With a speed relative to Fermi of 27,000 mph, a direct hit by the 3,100-pound Cosmos 1805 would release as much energy as two and a half tons of high explosives, destroying both spacecraft. The update on Friday, March 30, indicated that the satellites would occupy the same point in space within 30 milliseconds of each other. Fermi would have to move out of the way if the threat failed to recede. Because Fermi's thrusters were designed to de-orbit the satellite at the end of its mission, they had never before been used or tested, adding a new source of anxiety for the team. By Tuesday, April 3, the close approach was certain, and all plans were in place for firing Fermi's thrusters. The maneuver was performed by the spacecraft based on previously developed procedures. Fermi fired all thrusters for one second and was back doing science within the hour. Watch this video on YouTube. When Fermi Dodged a 1.5-ton Bullet